Aerial Robotics

Code	Credit Hours
AE- 445	1-1

COURSE DESCRIPTION:

This course aims to introduce concepts of the holistic design of autonomous aerial robots. The focus of the course will be on Unmanned Aerial Vehicle design, data acquisition through sensors and incorporation of intelligence for autonomous flight control. The course will also build the concepts of hardware and software related to Autonomous Flight Stack Implementation including UAV's dynamics, flight control, simultaneous localization and mapping, path planning and autonomous navigation. A brief introduction of Robot Operating System and Flight Controllers will also be taught as a part of this course.

TEXT AND MATERIAL

Textbooks:

- 1. F. Lewis, "Aircraft Control and Simulation", Wiley Latest Available Edition
- 2. S. Leutenegger, C. Huerzeler, A.K. Stowers, K. Alexis, M. Achtelik, D. Lentink, P. Oh, and R. Siegwart. **"Flying Robots"**, Handbook of Robotics Latest Available Edition .

Reference Material:

- 1. K. Valavanis, and P. Vachtsevanos, "Handbook of Unmanned Aerial Vehicles", Springer 2020
- 2. R. Beard, and T. W. McLain, "Small Unmanned Aircraft: Theory and Practice", Princeton University Press 2012

PREREQUISITE:

Control Systems

ASSESSMENT SYSTEM FOR THEORY

Quizzes	10%
Assignments	10%
Mid Terms	30%
ESE	50%

ASSESSMENT SYSTEM FOR LAB:

Quizzes	10%-15%
Lab Work/ Report	60-80%
Lab ESE/Viva	20-30%

Teaching Plan (Theory)

Week No	Topics	Learning Outcomes	Delivery Method
`1	Introduction to Aerial Robotics	Introduction to Aerial Robotics, Historical Background of Aerial Robots, Current Trends in Aerial Robotics, Impact in Society, Challenges in Aerial Robotics, and Aerial Robot Platforms	Lecture and discussion
2	Introduction to Aerial Robotics	The Aerial Robot Loop, Introduction to Perception & State Estimation, Flight Control System, Path Planning, Course Projects Assigned to Teams	Lecture and discussion
3	Navigation Sensors	Classification of Sensors, Typical Navigation Sensors, Inertial Sensors (Accelerometers, Gyroscopes), Magnetometers (digital compass), Pressure Sensors, Barometric pressure for altitude sensing, Airspeed measurements, GPS, Camera based navigation systems, Time-of-Flight sensors	Lecture and discussion
4	Navigation Sensors	LIDAR, SLAM - A micro- introduction	Lecture and discussion
5	Micro Aerial Vehicle Dynamics	MAV Dynamics, MAV Propellers	Lecture and discussion
6	Coordinate Frames	Coordinate Frames, Rotation of Reference Frame, Inertial & Vehicle Frames, How to represent orientation? (Euler Angles, Quaternions), Robot Kinematics.	Lecture and discussion
7	State Estimation	Sensor Model, Motion Model, Introduction to Probabilistic Robotics.	Lecture and discussion
8	Flight Controls Introduction	Attitude Control, Position Control	Lecture and discussion
9	MID TERM EXAM		
10- 11	Flight Controls Introduction	, Model Predictive Control	Lecture and discussion
12	PID Control	PID Controller Design for Micro Aerial Vehicles.	Lecture and discussion
13	Autopilot Study	Autopilot Functionality Stack	Lecture and

			discussion
14	Autopilot Study	2D Case Study	Lecture and
	Autophot Study		discussion
15	Aerial Robot Motion Planning	Trends in Motion Planning, Fundamental Problem of Path Planning, Coverage Path Planning Problem, Rapidly-exploring	Lecture and discussion
		Random Trees (RRTs) Algorithm.	
16	Aerial Robot Path Planning	Sampling-based Inspection Path Planning, Exploration of Unknown Environment)	Lecture and discussion
17	Aerial Robot Path Planning	Rapidly-exploring Random Tree- Of-Trees (RRTOT	Lecture and discussion
18	End semester exam (ES	SE)	

Teaching Plan (Lab)

Exp. No.	Description	
1.	Introduction to ROS Topics, Services, Actions and Nodes. Simple interaction with the course	
2.	Simulation environment Overview of ROS using Python	
3.	Software representation of a Robot using Unified Robot Description Format (URDF), ROS parameter	
4.	Server and adding real-world object representations to the simulation environment.	
5.	ROS simulation tools: Gazebo and Vrep	
6.	Drone Design in ROS: Fixed wing	
7.	Drone Design in ROS: Quadcopters	
8.	Map creation with GMapping package, autonomously navigate a known map with ROS navigation.	
9.	Motion planning with single drone: Concept of SLAM	
10.	Motion planning with multi-drones: Concepts of SWARM	
11.	Introduction to Pixhawk controllers	
12.	Implementation of flight navigation and control on DJI Tello drones	
13.	Swarm Intelligence implementation on DJI Tello drones	
14.	Project	
15.	Lab Exam	